O.P.Code: 19ME0314

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

(AUTONOMOUS) B.Tech III Year I Semester Supplementary Examinations June-2024 THERMAL ENGINEERING

		THERMAL ENGINEERING	1		68
Ti-	200	Mechanical Engineering) 3 Hours	(5)		
111	пе		Max.	Mar]	ks: 60
		(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I	1		
1	a	Explain the working principle of single stage single acting reciprocating air compressor.	CO1	L2	6M
	b	Mention single stage compressor equation for work, if neglecting clearance volume.	CO1	L2	6M
		OR	Ī		
2		In a two stage air compressor the pressure are atmospheric 1.0 bar: intercooling 7.4 bar: delivery 42.6 bar. Assuming complete intercooling to the original temperature of 15oC and compression index $n = 1$, find	1	L3	12M
		the work done in compressing 1 kg of air. UNIT-II			
3		A gas turbine unit receives air at 100 kPa and 300 K and compresses it adiabatically to 620 kPa with efficiency of the compressor 88%. The fuel has a heating value of 44180KJ/Kg and the Fuel/air ratio is 0.017 kg fuel /kg air. The turbine internal efficiency is 90%. Calculate the	CO2	L3	12M
		Compressor work, turbine work and thermal efficiency. Take Cp= 1.005KJ/Kg K.			
		OR			
4		The air enters the compressor of an open cycle constant pressure gas turbine at a pressure of 1 bar and temperature of 20° C. The pressure of the air after compression is 4 bar. The isentropic efficiencies of compressor and turbine are 80% and 85% respectively. The air-fuel ratio used is 90:1. If flow rate of air is 3 kg/s. find,(i) Power developed,(ii)	CO2	L3	12M
		Thermal efficiency of the cycle.			
5		Define Steam nozzle and also explain about expansion of steam in nozzle with neat sketch.	CO3	L1	12M
_		OR	- 1		982
6		What are the effects of super saturation on discharge and heat drop?	CO3	L1	12M
7	a	Explain the working process of reaction turbine.	CO4	L3	6M
	b	Show the velocity triangle diagram of reaction turbine. OR	CO4	L3	6M
8		Explain about the various methods of Governing steam turbines with neat sketches. UNIT-V	CO4	L2	12M
9		What are the important basic components of an IC engines? With a neat sketch explain any three parts in Internal Combustion engine.	CO5 CO5	L2 L3	6M 4M
		OR			
10		A single cylinder, four stroke cycle oil engine is fitted with a rope brake. The diameter of the brake wheel is 600 mm and the rope diameter is 26 mm. The dead load on the brake is 200 N and the spring balance reads 30 N. If the engine runs at 450 rpm, Discover the brake power of the engine? *** END ***	CO5	L2	12M